
Number: 11.10

July 2005

COBOL VS STANDARDS
AND

CONVENTIONS

Number: 11.10
Effective: 07/01/05

COBOL VS Standards and Conventions Page i
Rel: July 01, 2005

TABLE OF CONTENTS

1 INTRODUCTION .. 1
1.1 PURPOSE .. 1
1.2 SCOPE .. 1
1.3 APPLICABILITY ... 2
1.4 MAINFRAME COMPUTER PROCESSING ... 2
1.5 MAINFRAME PRODUCTION JOB MANAGEMENT .. 2
1.6 COMMENTS AND SUGGESTIONS ... 3

2 COBOL DESIGN STANDARDS .. 3
2.1 IDENTIFICATION DIVISION .. 4

2.1.1 PROGRAM-ID ... 4
2.1.2 AUTHOR .. 4
2.1.3 REMARKS ... 5

2.2 ENVIRONMENT DIVISION .. 6
2.2.1 CONFIGURATION SECTION ... 6
2.2.2 INPUT-OUTPUT SECTION .. 6

2.3 DATA DIVISION .. 8
2.3.1 FILE SECTION .. 8
2.3.2 WORKING STORAGE SECTION ... 10
2.3.3 LINKAGE SECTION .. 14

2.4 PROCEDURE DIVISION .. 15

3 COBOL CODING STANDARDS ... 15
3.1 IDENTIFICATION DIVISION .. 16

3.1.1 PROGRAM-ID ... 17
3.1.2 AUTHOR .. 17
3.1.3 INSTALLATION ... 17
3.1.4 DATE-WRITTEN ... 17
3.1.5 DATE- COMPILED .. 17
3.1.6 REMARKS ... 17

3.2 ENVIRONMENT DIVISION .. 20
3.2.1 CONFIGURATION SECTION .. 21
3.2.2 INPUT-OUTPUT SECTION ... 21

3.3 DATA DIVISION .. 23
3.3.1 FILE SECTION .. 23
3.3.2 WORKING-STORAGE SECTION .. 26
3.3.3 PROCEDURE: HANDLING EXCEPTION CONDITION .. 36
3.3.4 LINKAGE SECTION .. 37

3.4 PROCEDURE DIVISION .. 38
3.4.1 STRUCTURED ORGANIZATION ... 38
3.4.2 CALL STATEMENT ... 43
3.4.3 COMMENT STATEMENTS .. 44
3.4.4 IF-THEN-ELSE CONDITION STATEMENTS ... 44
3.4.5 COMPUTE STATEMENT ... 45
3.4.6 CONDITION NAMES .. 47
3.4.7 CONDITIONAL TESTS .. 47
3.4.8 DISPLAY STATEMENT .. 48
3.4.9 GO TO STATEMENT .. 48
3.4.10 IF STATEMENT ... 49

Number: 11.10
Effective: 07/01/05

COBOL VS Standards and Conventions Page ii
Rel: July 01, 2005

3.4.11 LOGICAL COMPARISONS .. 52
3.4.12 MOVE STATEMENT ... 52
3.4.13 ON CONDITION .. 53
3.4.14 OPEN/CLOSE STATEMENTS .. 54
3.4.15 PERFORM STATEMENT ... 54
3.4.16 PROGRAM SWITCHES ... 55
3.4.17 PRINT REPORT FORMAT ... 56
3.4.18 PROGRAM AUDIT CONTROL .. 56
3.4.19 PROGRAM CONSTANTS .. 57
3.4.20 PROHIBITED OR RESTRICTED VERBS .. 57
3.4.21 READ VERB .. 58
3.4.22 RECORD COUNTS .. 58
3.4.23 REPORT WRITER FEATURE .. 59
3.4.24 SEQUENCE CHECK .. 59
3.4.25 SORT FEATURE .. 59
3.4.26 STRING/UNSTRING COMMAND .. 60
3.4.27 SUBSCRIPTING AND INDEXING .. 60
3.4.28 TABLES.. 61
3.4.29 TERMINATION PROCESSING .. 61
3.4.30 NORMAL PROCESSING ... 62
3.4.31 ABNORMAL PROCESSING ... 62
3.4.32 TRACE VERB ... 62
3.4.33 WRITE OR REWRITE STATEMENT ... 62

4 COBOL ENVIRONMENTS .. 63
4.1 VSAM PROCESSING IN COBOL/VS .. 63
4.2 CICS/VS PROCESSING IN COBOL/VS ... 64
4.3 CICS PROGRAMMING TECHNIQUES AND RESTRICTIONS ... 64
4.4 OPERATING SYSTEM PROCESSING PROCEDURES .. 65

4.4.1 COBOL-FOR-MVS PROCEDURES .. 65
4.4.2 COBOL WITH CICS/VS PROCEDURES ... 66

4.5 TEST-TO-PRODUCTION PROCEDURES ... 67

5 APPENDIX A: STRUCTURED PROGRAM DESIGN ... 67

6 APPENDIX B: STRUCTURED COBOL SKELETON ... 68

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 1
Rel: July 01, 2005

1 INTRODUCTION

COBOL FOR MVS is the official application system language supported at the State of
Hawaii Executive Branch’s central computer site. Since 2001, COBOL FOR OS/390,
COBOL FOR MVS AND VM became IBM’S current COBOL language products, and
they replace both COBOL/370 and VS COBOL II which will not be supported.

This document assumes that the reader is at least familiar with VS COBOL II and would
like to learn and understand the COBOL FOR MVS language standards, conventions,
procedures, and/or guidelines that must be understood and observed when a COBOL
application program is intended to run on the State of Hawaii mainframe computer.

This document is intended to be used by application Data Processing Systems Analysts
(DPSA) and Computer Programmers (CP) during both the development, design, and
construction of new applications; and for application program maintenance,
enhancement, or update of existing application programs. Permissive-type words such
as “should”, “avoid”, “minimize”, “try”, or “encouraged” are included in this document.

NOTE: “Permissive-type” words are intended to provide guidance for people who are
working with existing programs and who are only modifying or enhancing existing
program logic or code. However, for the development of any new program or
application, these permissive-type words shall be understood to be interpreted in their
absolute UNCONDITIONAL sense of “will”, “DO not”, or “shall”.

1.1 Purpose

The primary purpose of this document is to provide a common basis for the
development, design, construction, installation, and implementation of
standardized application systems. The programs within these systems should
then be uniform and consistent in structure, style, development, and content.

These standards and conventions should result in application programs that
would be designed so that the resulting program language source codes are
prose-like descriptive, consistent-in-form, self-documenting, readable, and easy
to modify, maintain, revise or update by any maintenance application computer
programming personnel.

1.2 Scope

This document, "COBOL FOR MVS Standards" is organized into three sections.
The first, "COBOL Design Standards", is for data processing systems analysts
(DPSA). The second, "COBOL Coding Standards", is for application computer

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 2
Rel: July 01, 2005

programmers (CP). And the third, "COBOL Environments", is to describe the
available in-house COBOL utility operating system procedures that should be used
to execute COBOL applications at the Executive Branch’s central computer site, in
either batch or on-line environments.

1.3 Applicability

The definitions for the terms such as "policy," "procedure," "standard," " The
standards, conventions, procedures, and guidelines presented in this document
must be followed by the Information and Communication Services Division
(ICSD) computer programmers and data processing systems analysts, by any
State agency with data processing personnel, and by any consultant, vendor, or
contractor working for the State who will be using the State's computing
resources at the State Executive Branch’s central computing site.

1.4 Mainframe Computer Processing

Computer applications for the State of Hawaii Executive Branch should be
designed for and developed with COBOL for MVS. The mainframe computer
processing system for the State of Hawaii Executive Branch is an IBM 9672-RC5
system that runs in “LPAR” (logical partition) mode with separate designated
logical OS/390 operating systems for each of the following host nodes:

a. Node-A is primarily used for online access to PRODUCTION data through

CICS/VS and ADABAS regions. It is also used for production batch
processing.

b. Node-B is primarily used for online access to TEST data through CICS/VS

and ADABAS regions. It is also used for TSO (Time Sharing Option), and for
test or production batch processing.

c. Node-E is primarily used for online access of both PRODUCTION and TEST

data through CICS/VS and DB2, and also for test or production batch
processing for the Department of Education.

1.5 Mainframe Production Job Management

Any application production job stream shall (as its last job step) execute a
program like “PGM=L1PGG40L” so that a “message in a box” will appear on the
job-log report. This message will allow mainframe production control personnel to
know that the job named in the parameter for the last executed step has

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 3
Rel: July 01, 2005

“completed successfully.”

Example:

//STEP99 EXEC PGM=L1PGG40L,COND=(02,LT),
// PARM=’XASA1’
//STEPLIB DD DSN=EDPD.LINKLIBP,

// DISP=SHR

1.6 Comments and Suggestions

Any State of Hawaii Information Technology Standards document, reference
manual or users guide mentioned in this document are available through the
departmental user agency data processing coordinator (DP Coordinator).
Standards are also accessible on-line by clicking on Information Technology
Standards on the ICSD home page at:

http://www.hawaii.gov/icsd/

Statewide Forms are accessible on-line by clicking on Forms Central on the
Government in Hawaii home page at:

http://www.ehawaiigov.org/government/html/
Comments, recommendations, proposals, or suggestions regarding the contents of
this document may be sent either via email to icsd.admin.ppmo@hawaii.gov or in
writing to:

 Information and Communication Services Division
 Project Planning and Management Office
 1151 Punchbowl Street, B10
 Honolulu, Hawaii 96813-3024

2 COBOL DESIGN STANDARDS

The standard User Application programming language at the State’s central computer
site is IBM COBOL FOR MVS. Occasionally, a program, subroutine, or macro may be
developed in other languages, but only if the other language is more suited for
addressing specific or unique application design issues, problems or constraints.

These COBOL standards are meant to serve as a statewide convention and guideline
for application systems design. Prime consideration is given to the issues of program
structure, organization, ease of maintenance, and compiler efficiency.

mailto:icsd.admin.ppmo@hawaii.gov

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 4
Rel: July 01, 2005

These standards and guidelines will also establish a unified approach for developing the
design of COBOL FOR MVS application programs. In any case, these design
standards will be followed by contractors, vendors, and consultants who will be
designing application systems for the State of Hawaii Executive Branch.

These design, development, and construction standards will be used to orient new Data
Processing Systems Analysts hired by the State. Good program design practices and
established standards should always be understood and followed.

This section presents specific conventions and guidelines for improving COBOL
program performance. It is written primarily for IBM OS/390 COBOL data
processing systems analysts who have a good understanding of COBOL language
syntax and structure.

2.1 IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION provides the pertinent information concerning the
COBOL application program design development.

2.1.1 PROGRAM-ID

The eight (8) character systems analyst assigned mnemonic name should
conform to the Statewide Information Technology (IT) standard naming
conventions discussed in the Program Naming Convention section of the
statewide Information Technology OS/MVS JCL Standards.

A brief one-line comment statement summarizing the major purpose or
function of the program follows this line. The detail program description
will follow in the Remarks Section.

Example:

 PROGRAM-ID. XLSA1A1L.

* EXTRACT PREVIOUS 12 MONTHS XLSA TRANSACTIONS.

2.1.2 AUTHOR

The full name of both the designer Data Processing Systems Analyst’s
and the developer Computer Programmer's names will be included here.

Contractors, Vendors, and Consultants will indicate the firm’s name, and

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 5
Rel: July 01, 2005

the names of their Designer and Developer names should also appear
here.

Example-1:

AUTHOR. ANALYST: ANDREW A ANDERSON
 PROGRAMMER: PHILIP P PETERS.

Example-2:

AUTHOR. ANALYST: ASHLEY A ATOZ
 PROGRAMMER: PAT P POTTERS

 CREATIVE APPLICATIONS INTEGRATORS.

2.1.3 REMARKS

This section will provide a brief narrative of the program's purpose and
functions; and a summary description and dates of all revisions made
subsequent to the implementation. This section will contain the following
subsections:

a. Program Abstract

A brief description of the main program function or purpose, usually 3 to 5
sentences. If the program is part of a system of programs, then also
explain how the program fits into the system. The following should be
included:

If subroutine must be called by the program, list the names of subroutines.

Example:

* SUBROUTINES CALLED ARE: "CANCEL", "GREGRN".

b. File Descriptions

Enter the name of each file used by the program indicating whether it is
input, output or work file (I/O) and its file organization (PHYSICALLY
SEQUENTIAL, VSAM)

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 6
Rel: July 01, 2005

Indicate position and length of sort key fields that were used to control the
record order sequence, provide description of key word fields, and briefly
describe the source and purpose of any internal or external files.

c. Included Text

Indicate Panvalet include names when ++INCLUDE will be used to copy
record layouts, processing structures, members, or subroutines.

2.2 ENVIRONMENT DIVISION

The function of this division is to define and specify the hardware configuration and
requirements of the program.

2.2.1 CONFIGURATION SECTION

In COBOL for MVS, the use of the Configuration Section is optional.

2.2.2 INPUT-OUTPUT SECTION

a. Programs will not use three (3) or more tape drives concurrently (for

both INPUT and OUTPUT for a job).

Any exception, at any time, requires the approval of the ICSD
Production Services Branch (PSB) computer operation's scheduler or
the computer operator shift supervisor, and must be scheduled to
assure the availability of the tape drives.

NOTE:

No program will use the computer console as a typewriter for I/O
messages that would need any computer operator to key-enter a
response.

Example:

'ACCEPT FROM CONSOLE'

b. The body of all batch programs will have the ‘DISPLAY’ statement:

'DISPLAY UPON CONSOLE'

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 7
Rel: July 01, 2005

to send AT LEAST one message either at the beginning, or at the
ending of the program to inform the ICSD PSB computer operator
or control personnel of the status of the program.

Example:

DISPLAY ‘ ***** PROGRAM-NAME: ‘ PROG-ID, ‘— ‘,

 ‘NORMAL TERMINATION ****’ UPON CONSOLE.

c. Programs should be designed to be hierarchical, structured, modular,

and perform only one function. Avoid the use of the ‘GO TO’
command. When the ‘GO TO’ command is needed, it should always
transfer control in a top-down manner
NOTE:

Any exception to the above ‘DISPLAY’ statement must have the
PRIOR approval of the DAGS-ICSD-PSB Branch Manager.

2.2.2.1 FILE-CONTROL

The FILE-CONTROL contains the SELECT Statement that is used
to link the COBOL application program’s I/O commands to the
physical I/O data devices.

The following are considerations for the use of reserve words in the
SELECT statement:

a. The "ASSIGN TO" DDNAME (DATA DEFINITION NAME) must
follow the statewide Information Technology (IT) Program
Naming Convention format.

b. For the “ASSIGN” clause, device independence is required.

Programmers should not assign data sets to particular devices.
Actual assignments should be made via Job Control Language
(JCL) statements at execution time.

c. The “RESERVE” clause should not be specified in the program.

The assignment should be made at execution time via JCL DD
(DATA DEFINITION) statements.

2.2.2.2 I-O-CONTROL

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 8
Rel: July 01, 2005

The I-O-CONTROL statement contains two reserve words whose
use should be restricted.

The RERUN paragraph must not be used (the job statement
checkpoint subroutine may be used).

The “APPLY” clause should only be used with OCCURS...
DEPENDING specified data. It may also be used with the approval of
the project leader.

2.3 DATA DIVISION

The Data Division describes the attributes, features and functions of each file,
record, and data element used in the program.

THE use of the “COPY” Statement is not allowed. The ++INCLUDE command
from the ICSD acquired utility software product, Panvalet, will achieve the same
result.

Data division members for all records used in more than one program should be
created and placed IN the Panvalet test library, and included in application
programs when required. The project manager is responsible for the creation of
the Panvalet include modules.

2.3.1 FILE SECTION

The “FILE SECTION” Contains a description of all externally stored data as
well as each Sort-Merge-File used in the program.

2.3.1.1 Record Description Entries

Each record description will contain the following entries:

BLOCK CONTAINS. Use the phrase “BLOCK CONTAINS 0

RECORDS” so that the number of physical records in
a logical block will come from the JCL Data Control
Block (DCB). The exception may be for keyed-
sequenced VSAM files where the number of records
per block could be specified.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 9
Rel: July 01, 2005

RECORD CONTAINS. This entry must not conflict with the
LOGICAL record size defined in the JCL DCB.

LABEL RECORD. Use the phrase “LABEL RECORDS ARE

STANDARD” to eliminate an operating system
warning statement.

RECORDING MODE. Use the phrase “RECORDING MODE IS F”

to specify that there are fixed blocks of data in the file.
The specification for this parameter may come from
the job control language (JCL) data set Access
Control Block (ACB) specification.

IMPORTANT NOTES:

a. The ICSD has a standard skeleton COBOL FOR MVS program in an
IBM-TSO shared partitioned dataset named (COBOLMVS). This model
template source program has the data layout storage descriptions for a
program that will produce a printed control report.

b. In the FILE SECTION, each file data record picture description will

have only one “FILLER” statement to reflect the total logical record
length. The exception is when a keyed-definition record is being
defined, then appropriate field names for the key data, and the
RECORD STATUS should be specified in this SECTION.

c. Sequential files should have fairly large block sizes containing a

number of logical records up to a maximum size of 32,768 bytes.

The COBOL compiler’s de-blocking routine to get logical records from
the larger physical block-size record area is very fast, and it does not
require the massive number of housekeeping instructions that would
be required to get a physical block-size logical record for each I/O data
request.

Large blocks save I/O channel time and improves peripheral storage
capacity, but requires more Virtual Storage for Buffer Management.

The large physical block-size records may substantially increase the
total region size for the program execution.

d. For VSAM files, the recommended VSAM file Control Internal (CI) size

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 10
Rel: July 01, 2005

is 4,096 bytes.

e. The CI size value up to 8,192 must be a multiple of 512. The CI size

value may be a number up to 32,768 BYTES, however, when the CI
SIZE value that is greater than 8,192 BYTES, it must be a multiple of
2,048.

f. For VSAM files that are used mainly for random retrieval, use CI sizes

of 4,096 or less.

g. For VSAM files used mainly for sequential processing, use larger CI
sizes.

h. For VSAM files, be sure that you have requested the IMBED option. It

is similar to the APPLY CORE-INDEX option, because it causes the
index to be resident.

2.3.1.2 APPLY WRITE-ONLY

Specify APPLY WRITE-ONLY in the Environment Division for the
output of varying blocked records. This cuts short output blocks
when the remaining space would be too small for the maximum
number of occurrences in an OCCURS record.

For APPLY WRITE-ONLY. In the output file layout, specify the
data-name of another elementary level item as the DEPENDING
object. Do not specify the DEPENDING field in the record itself that
has the OCCURS.

2.3.1.3 PICTURE

The abbreviated “PIC” form is preferred. The multiplying factors for
the picture length should be at least two digits. When a logical
grouping of ten or more items is required, the PIC clause and its
associated characteristics should be vertically aligned to facilitate
summing.

2.3.2 WORKING STORAGE SECTION

The Working Storage section contains data description entries for
non-contiguous data items and/or records.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 11
Rel: July 01, 2005

2.3.2.1 WORKING-STORAGE CONVENTIONS

Rules for designing DATA RECORDS as stated in the FILE
SECTION apply here unless specifically restricted.

a. “77 level” entries will not be used. Instead, elementary items such

as counters, indicators, subscripts, switches, etc., will be grouped
together under 01, 05, or 10 levels

b. “88 level” condition names should be used to describe the tested

conditions. Names should be meaningful to make the application
readable and “self-documenting”.

c. All data items should be designed to be initialized with a VALUE

clause wherever possible. The exception are variables whose
values will come from the special registers.

d. Numerical data that will not be used in calculations, like

ZIP-CODE, should be defined as Alphanumeric, PIC X(05).

e. Specify the same usage (COMP or COMP-3) for numeric items
which interact in moves, compares, and arithmetic statements.

f. For added and subtracted items, try to specify the same number

of decimal places.

2.3.2.2 WORKING-STORAGE Organization

a. Fixed length group items or tables are limited to 131,071 bytes.

b. Varying length tables must not exceed 32,767 bytes.

c. Working-Storage data entries will be categorized into major

groupings (01, 05, or 10 levels). The names assigned for a similar
function in the major grouping should be designed to begin with
the same prefix.

For example:

all counters have prefix of "CNT";
any accumulator have prefix of "CUM";

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 12
Rel: July 01, 2005

any indices have prefix of "INDX";
any message have prefix of "MSG"; etc.

2.3.2.3 ERROR-SWITCH

Use the following procedure to handle exception conditions in your
program. Include an error switch labeled ERROR-SW of one byte
and PROG-ID of eight bytes to the program. ERROR-SW will be
initially set to zero. PROG-ID will contain the program's Program-ID
Number.

2.3.2.4 COMPUTATIONAL

COMP is the best format for items used as subscripts, in extensive
integer arithmetic, or as OCCURS...DEPENDING objects.
Conversion to COMP will automatically occur for subscripts when
COMP is not specified.

COMP results in the fastest arithmetic instructions.

a. Make COMP items less than five digits if possible. One to four

digits require two bytes; five to nine digits require four bytes;
more than nine require eight bytes and more complex machine
instruction sequences.

b. Avoid using more than 15 digits. Machine instructions cannot

handle over 15 digits, so expensive subroutines are needed to
process larger items.

Maximum decimal value for a PIC S9(04) COMP is 65,535.

Maximum decimal value for a PIC S9(05) COMP-3 is 99,999.

c. For numeric fields larger than 6 digits, do not use COMP,

instead use COMP-3 because COMP-3 values are easier to
read in an error ABEND dump listing.

For COMP-3, each storage byte holds two digits for efficient use
of space in memory and on peripheral storage. Efficient
machine instructions process COMP-3 data directly; other
formats often require conversion to COMP-3.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 13
Rel: July 01, 2005

d. Specify “S” in PICTURE for COMP and COMP-3 items,
otherwise an extra instruction is needed to remove the sign
whenever the value is modified. Specify an odd number of
digits for the field length.

e. Except where COMP is best (see above), COMP-3 is the

preferred format for all numeric items.

f. Specify SYNC for COMP items to align the elementary item on
a proper storage boundary. This will ensure efficiency when
performing arithmetic operations.

The SYNC clause is encouraged for any computational items
and may appear only at the elementary level. If used,
performance is improved when performing arithmetic
operations. But this may increase virtual storage and record
size requirements.

2.3.2.5 OCCURS

The purpose of this facility is to conserve I/O channel time and
peripheral space by carrying only the meaningful occurrences in a
variable-length list of items, rather than always carrying the
maximum number.

For sequential access of VARYING RECORD SIZES IN A file, the
compiler must generate generalized code to handle all possible
record and group lengths. Use OCCURS...DEPENDING with care.

IMPORTANT NOTE:

OCCURS...DEPENDING is extremely costly in CPU time.

Every time the DEPENDING variable is modified (via READ,
WRITE, MOVE, or calculation), time-consuming routines are
needed to compute the current length of groups and the location of
variably located fields.

Variable-length records must be written in large blocks. Care is
needed to assure efficient use of output buffers and DASD storage.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 14
Rel: July 01, 2005

Use only one OCCURS...DEPENDING statement in the overall
record description. The overhead from "nested"
OCCURS...DEPENDING is much greater than in a simple use of
the “OCCURS”.

Put the OCCURS...DEPENDING data at the end of the record,
preceded by all fixed data. Extra overhead is entailed in accessing
any fixed data following the variable data, since its relative position
is also variable.

2.3.2.6 REDEFINES Clause

All redefining should refer to the originally defined statement
regardless of the number of redefinitions.

2.3.2.7 RENAMES Clause

Do not use the “renames” clause. The REDEFINES clause can be
used to get the same result.

2.3.2.8 USAGE Clause

Internal elementary numeric items should be defined with the
appropriate computational form whenever the primary use is in
arithmetic operations.

If arithmetic is not performed on a numeric item, it should be
defined to have an alphanumeric “X” picture.

If frequent arithmetic is performed on a numeric item, it should have
a usage of COMP-3 with an odd number of digit positions or other
forms of COMP as appropriate.

2.3.2.9 VALUE Clause

The VALUE clause should not be stated within the FILE SECTION.

Numeric items should always be signed unless an absolute value is
necessary.

2.3.3 LINKAGE SECTION

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 15
Rel: July 01, 2005

The LINKAGE SECTION is used to describe data made available from
another program.

Data item description entries in the LINKAGE SECTION provide names
and description, but storage within the program is not reserved since the
data area actually exists elsewhere.

Heavily used data parameters that are passed via the LINKAGE
SECTION should be moved to WORKING-STORAGE variables before
these data-elements are referenced in the processing logic.

CICS/VS interface and storage control statements are found in the
LINKAGE SECTION.

Example:

LINKAGE SECTION.

01 DFHCOMMAREA PIC X(010).
01 DB-PCB1 PIC X(100).
01 DB-PCB2 PIC X(100).

2.4 PROCEDURE DIVISION

The Systems Analyst responsible for the program project must follow structured
programming design techniques. It is recommended that a 3-step process
transition from a data-flow-diagram, to a functional hierarchical structured chart,
and ultimately to a pseudo code of the logical algorithm. The pseudo code is the
foundation of the program solution. The details for the program comes from
expanding the information defined in the requested system's specifications, see
Appendix-A. The needed functions for the application’s solution are expanded
into the appropriate program syntax structures.

3 COBOL CODING STANDARDS

The standard programming language for the Executive Branch’s central computer site
installation is IBM COBOL FOR MVS. Occasionally, a program, subroutine, or macro
may be developed in other languages, but only if the other language is more suited to
the problem.

These coding standards are meant to serve as a statewide guideline to improve

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 16
Rel: July 01, 2005

program quality and programmer productivity. Prime consideration is given to the
issues of program readability, understanding, ease of maintenance, ease of debugging,
and program efficiency.

These standards and guidelines will provide for uniformity in the development of reliable
COBOL application programs.

Good programming practices and established standards should always be followed.
Changes to improve efficiency should never obscure basic program logic.

This section has specific conventions and guidelines for improving COBOL program
performance. It is written primarily for IBM OS/390 COBOL Computer Programmers
who have a good working knowledge of COBOL language grammar, syntax, and
structure.

The standard application development approach includes structured design and
programming with the strongly recommended use of a basic standardized skeleton
program like the one stored in EDPD.PANVTEST as XASA1A1HA1 (see Appendix-B).

As a Supplement, the IBM COBOL Compiler and Library Programmer's Guide's chapter
on "PROGRAMMING TECHNIQUES" offers IBM's recommended techniques for
increasing the efficiency of COBOL programs. These recommendations may be
followed when they do not conflict with the State's standards.

IMPORTANT DEBUGGING FACILITIES NOTES:

The STATE, FLOW, ENDJOB, DYNAM, COUNT, SYST, TEST, and SYMDMP
parameter options and READY TRACE and EXHIBIT statements should be used
only in debugging.

These facilities add substantial overhead to the program and may be very costly
in both memory space and CPU time. (All DEBUG OPTIONS, except STATE
consume execution time while the program is running, even if no TRACE is
taken, and even if the program does not ABEND.)

Under no circumstances are any of these Debugging Facilities to be specified for
CICS/VS programs. Consult the CICS/VS Application Programmer's Reference
Manual for Translator Options for COBOL under CICS/VS, and the COBOL
CONSIDERATIONS section of this document.

3.1 IDENTIFICATION DIVISION

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 17
Rel: July 01, 2005

The Identification Division provides for the capture of all pertinent information
concerning the program.

3.1.1 PROGRAM-ID

The eight character assigned mnemonic conforming to the standard
naming conventions will be provided by the Data Processing System
Analyst.

A one-line comment statement summarizing the major purpose or function
of the program follows this line.
Example:

 PROGRAM-ID. XASA1A1L.
* EXTRACT LAST TWELVE MONTHS TRAINING
TRANSACTIONS.

3.1.2 AUTHOR

Both data processing systems analyst and computer programmer's names
will appear here. Contractors and consultants will also indicate the firm's
name here.

3.1.3 INSTALLATION

The use of this command is OPTIONAL.

3.1.4 DATE-WRITTEN

Use format of "February 22, 2005" to reflect the date when the coding was
originally developed and coded.

3.1.5 DATE- COMPILED

Enter only paragraph name because the system will insert the current date at
compile time.

3.1.6 REMARKS

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 18
Rel: July 01, 2005

This section will provide a brief narrative of the program and a summary of all
revisions made subsequent to the initial implementation. This section will
contain the following subsections:

a. Program Abstract;

A brief description of the main program logic, keep it short, from 3
to 5 sentences. If the program is part of a system of programs, then
explain how the program fits into the system. The following should
also be included:

i. If the SPECIAL-NAMES paragraph (except for top-of-page) or

I-O control paragraph is used, it should be mentioned here to
draw attention to its presence.

ii. If subroutine calls are used in the program, list the names and
functions of subroutines.

Example:

EXTERNAL SUBROUTINES CALLED: "CANCEL", "GREGRN".

• Explain the routine’s structure and use of any table.

• Explain when and how the routine should be used.

. Establish the minimum requirements for the protection of the State's

physical assets as they relate to the misuse or loss of computer
hardware or equipment;

b. File Descriptions

Enter the name of each file used by the program indicating whether
it is input, output or work-file (I/O) and its file organization (PS,
VSAM)

i. If the SPECIAL-NAMES paragraph (except for top-of-page) or

I-O control paragraph is used, it should be mentioned here to
draw attention to its presence.

ii. Indicate Panvalet include names if ++INCLUDE command is

used.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 19
Rel: July 01, 2005

c. Program Modification

Any revision and modification to the program should be noted.
Data should include change request number, date change
implemented, programmer's name, and summary description of the
change.

EXAMPLE of IDENTIFICATION DIVISION:

IDENTIFICATION DIVISION.

PROGRAM-ID. XASA1C1L.

* ICSD TRAINING EVALUATION REPORTS

INSTALLATION. STATE OF HAWAII, DAGS-ICSD.

AUTHOR. PROGRAMMER: RONALD O. WHITE;
ANALYST: HARRY I. SMITH.

DATE-WRITTEN. MARCH 3, 2001.

DATE-COMPILED.

*REMARKS. 1. GENERATES ANNUAL TRAINING STATISTICS
* FROM MASTER ATTENDANCE FILE.

* 2. PRODUCES THE FOLLOWING REPORTS:
* a. XASA1C1R - DETAIL COURSE STATISTICS.

* b. XASA1C2R - SUMMARY BY COURSES.
* c. XASA1C3R - DETAIL DEPT. STATISTICS.
* d. XASA1C4R - DETAIL STUDENT STATISTICS.

* 3. TERMINATE JOB IF INPUT IS OUT OF SEQUENCE.

* 4. SORT ORDER: 01,41,CH,A SORT KEY
* 66,02,CH,A TRAN YEAR
* 62,04,CH,A TRAN MONTH-
DAY

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 20
Rel: July 01, 2005

* 5. COURSE CODE AND DESCRIPTIONS MAXIMUM
* OF 90 COURSES.

* 6. DEPT CODE AND NAME FOR 45 AGENCIES.

* MODIFIED 09-11-2001 TO ADD SPECIAL DEPARTMENTAL
* STAFF PORTFOLIO REPORT-XASA1C5R.

3.2 ENVIRONMENT DIVISION

The function of the Environment Division is to define and specify the hardware
configuration and requirements of the program.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 21
Rel: July 01, 2005

3.2.1 CONFIGURATION Section

The SOURCE-COMPUTER and OBJECT-COMPUTER paragraph are
optional. If you want to identify the computer, specify IBM-OS-390.

The use of the SPECIAL-NAMES paragraph for any purpose other than
for “TOP-OF-PAGE” or “NEW-PAGE”, is discouraged.

Do not use SPECIAL-NAMES to rename input/output devices, because the
function names are already as explicit as any mnemonic.

IMPORTANT NOTE:

DO NOT USE COBOL REPORT WRITER COMMAND STATEMENTS. THE
COBOL FOR MVS AND VS COBOL II DO NOT DIRECTLY SUPPORT THE
REPORT WRITER FEATURE.

3.2.2 INPUT-OUTPUT Section

a. No program will use more than three (3) magnetic tape cartridge
drives (I/O) concurrently for any length of time.

b. Any exception for more tape cartridge drives requires the approval of

the ICSD PSB Computer Operations Scheduler or Shift Supervisor,
and must be scheduled to ensure the general availability of the tape
drives.

c. No program will use the console typewriter for any I/O message that

would require a computer operator to enter a response at the
computer console.

d. All batch programs will use DISPLAY statements to send an Operator

Console status message, using:

DISPLAY UPON CONSOLE

The ‘DISPLAY UPON CONSOLE’ sentence is used to send
messages to indicate the beginning and/or ending of a program
execution.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 22
Rel: July 01, 2005

Example:

DISPLAY ‘ *** ‘, PROG-ID, ‘ *** ‘,
‘NORMAL TERMINATION ***’ UPON CONSOLE.

**NOTE:

For any exceptions to the above, the specifications and designs must be
approved by the ICSD PRODUCTION Services Branch (PSB).

3.2.2.1 FILE-CONTROL Paragraph

a. SELECT Statements

For readability, and to allow the flexibility for name changes, each
SELECT statement will begin on a new line with the ASSIGN and
other options indented on the following line under the file-name.

Example:

SELECT PAY-XTRACT-FILE
ASSIGN TO XLSA1A1D
KEY IS XTRT-ID-KEY
PASSWORD IS OPEN-OKAY.

b. File names

All file names will be descriptive and must end with the suffix word
"-FILE" and indicate the file's primary purpose or function, such as,
input, extract, output, work, sort, or the project's PMS code.

Example:

MSTR-IN-FILE (Sample Input File Name)
MSTR-OUT-FILE (Sample Output File Name)
TRAN-IN-FILE (Sample Input File Name)
TRAN-ERROR-FILE (Sample Output File Name)
OAB-XTRACT-FILE (Sample PMS File Name)

c. ASSIGN clause

Device independence is encouraged. Programmers will not assign

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 23
Rel: July 01, 2005

data sets to particular devices.
d. RESERVE clause

Reserve clause should not be specified but instead assigned at
execution time via JCL (job control language) DD statements.

e. FILE STATUS clause

File status must be defined in the Data Division for all VSAM files.
It is used to monitor the successful execution of each I/O request of
the VSAM file.

3.2.2.2 I-O-CONTROL Paragraph

a. The RERUN paragraph must not be used (the checkpoint

subroutine is available).

b. The APPLY clause is discouraged except for use with

OCCURS....DEPENDING. It may only be used with the
approval of the project leader.

3.3 DATA DIVISION

This division describes each file, record, and data element used in the program.

The use of the ‘COPY’ statement is not allowed. The Panvalet ++INCLUDE
command will achieve the same result.

The COBOL Report Writer Facility will not be used.

Data division members for all records used in more than one program should be
designed and created in the project’s library, copied into the PANVALET test library,
and included in application program logic when required. The design and creation
of any shared PANVALET include module is the project systems analyst's
responsibility.

3.3.1 FILE SECTION

The File Section contains a description of all externally stored data as well
as each Sort-Merge-File used in the program.

3.3.1.1 File Description Entries

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 24
Rel: July 01, 2005

a. The file-name is the computer programmer’s descriptive

mnemonic name for the data file.

The file-name identifies the major function and purpose for the
file. DO NOT link the file-name to a physical device

b. The file-name should have at least three portions. The last

suffix word must be "-FILE". The other words must describe the
application system purpose, the primary function, activity, or
data source.

Example:

 MSTR-TRAINING-FILE
 PAYROLL-MASTER-FILE
 PMS-XTRACT-MSTR-FILE

3.3.1.2 File Description Entries

Each record description will contain the following entries:

BLOCK CONTAINS. Use BLOCK CONTAINS 0 RECORDS for

sequential files. The value for this parameter
will be determined by the JCL at execution.
For keyed-sequenced files, the actual number
of records per block may be specified when the
file is accessed randomly. For VSAM files, this
statement is treated as a comment.

RECORD CONTAINS. This entry is optional. If the actual record

size is larger than the total specified record
length description, only the 01-level specified
data length is made available to the computer
operating system.

LABEL RECORD. This statement definition comes through JCL
parameter. The omission of this phrase
currently results in a compiler warning
message, so it is recommended to add the

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 25
Rel: July 01, 2005

phrase:
"LABEL RECORD IS STANDARD".

DATA RECORD. The record description names must be related to

the given file name for ease of program
maintenance. The only difference in the
names is the suffix name, "-FILE" is changed to
"-RECORD" OR "-RECD".

Example:

FD MSTR-XTRT-FILE

BLOCK CONTAINS 0 RECORDS
 .
 .
 .

 DATA RECORD IS MSTR-XTRT-RECD.

IMPORTANT NOTES:

a. The ICSD standard skeleton COBOL FOR MVS program has the
DATA STORAGE date-element field description for a model template
program that will produce a printed control report.

b. The data record picture description will use only one “FILLER”

statement to reflect the total logical record length. The exception is
when a KEYED-DEFINITION record is being defined, then appropriate
field names for the KEY data and RECORD STATUS may be placed in
this SECTION.

c. Sequential files should have fairly large block sizes containing a

number of logical records up to a maximum size of 32,768 bytes.

The COBOL COMPILER’S de-blocking routine to get logical records
from the physical BLOCK-SIZE is fast and does not require the
massive number of housekeeping instructions required to get a new
physical block of data.

Large blocks save I/O channel time and improves peripheral storage
capacity, but requires more Virtual Storage for Buffer Management.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 26
Rel: July 01, 2005

The large physical block-size record may substantially increase the
total region size for the program execution.

d. FOR VSAM FILES, be sure that you have requested the IMBED

option. It is similar to the APPLY CORE-INDEX option, it causes the
index to be resident.

3.3.2 WORKING-STORAGE SECTION

This section contains data description entries for non-contiguous data
items and/or records.

3.3.2.1 WORKING-STORAGE Conventions

Rules for recording data as stated in the FILE SECTION apply here
unless specifically restricted.

a. 77 level entries must be removed. Elementary items such as

counters, indicators, subscripts, switches, etc., should be
grouped together under 01, 05, or 10 levels.

b. 88 level condition names should be used to describe and test

conditions. Names should be meaningful. See example in
Switches after WORKING-STORAGE ORGANIZATION.

c. All data items including constants, should be initialized with a

VALUE clause wherever a value is needed.

d. Continuation of literals is not allowed. The entire literal should
be coded on one line, or split into two or more value lines.
Careful alignment helps reduce checkout time and produces
preferable documentation.

e. All fields to be used in numerical calculations should be signed,

(packed) COMP-3, and have an odd number of digits.

f. Numerical data that will not be used in calculations should be
defined as Alphanumeric, for example: ZIP-CODE PIC X(05).

g. Arithmetic fields must not be in display mode unless it is part of

an I/O record.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 27
Rel: July 01, 2005

h. Eliminate any records or independent items in Working-Storage
that are not referenced in the cross-reference listing.

i. Try to specify the same usage (COMP or COMP-3) for numeric

items which interact in moves, compares, and arithmetic
statements.

j. For added and subtracted items, specify the same number of

decimal places when possible.

k. Use the variable FILLER to define any unreferenced data field
areas.

3.3.2.2 WORKING-STORAGE Organization

a. The first and last entry for the Working-Storage Section must

contain a descriptive literal message to define where
WORKING-STORAGE Begins and Ends to provide the
programmer with a debugging aid to locate data assigned to
variables within the WORKING-STORAGE.

Example:

WORKING-STORAGE SECTION.
01 WS-MESSAGES.

05 FILLER PIC X(32) VALUE
 ‘PGM=XLSA1A1L, WS BEGINS HERE’.

 .
 .
05 FILLER PIC X(32) VALUE

 ‘PGM=XLSA1A1L, WS ENDS HERE’.

b. Place the high activity data at the beginning of each group of the

WORKING-STORAGE SECTION variables.

c. If possible, start all PICTURE clauses in column 42. When a

long VALUE clause of more than 12 characters or attribute
continuations necessitated by a very long PICTURE expansion
in column 32; and for short PICTURE attributes, place COMP-3,
COMP, or short VALUES beginning in column 52.

Example:

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 28
Rel: July 01, 2005

05 ONE PIC S9(05) VALUE +00001 COMP-3.
05 FICA-RATE PIC S9(01)V9(04)VALUE +0585

 COMP-3.

d. For the ease of program checkout and maintenance, it is
suggested that WORKING-STORAGE data entries be
categorized into major groupings (01, 05, or 10 levels)
whenever possible or practical.

The names assigned to the fields in a major grouping should all
begin with the same functional descriptive prefix. The fields in
each major group should be alphabetized. But fields within
major groups that may be printed should be listed in the same
order as the output.

EXAMPLE OF WORKING-STORAGE COUNTERS AND ACCUMULATORS:

01 ACCUMULATORS.

05 CUM-AMT-PAID PIC S9(7) COMP-3.
05 CUM-INTEREST PIC S9(7) COMP-3.
05 CUM-SUBTOTAL PIC S9(9) COMP-3.
05 CUM-MON-TOTAL PIC S9(9) COMP-3.

01 COUNTERS.

05 CNT-CLIENT-TYPES PIC S9(7) COMP-3.
05 CNT-MASTER-READ PIC S9(7) COMP-3.
05 CNT-REJECT-RECD PIC S9(7) COMP-3.
05 CNT-SELECTED PIC S9(7) COMP-3.
05 CNT-TRANS-READ PIC S9(7) COMP-3.
05 CNT-WRITE-MSTR PIC S9(7) COMP-3.

.
e. Some recommended major groupings are as follows:

i. Input/Output Areas. This entry would include the
Working-Storage copies of the record
layouts of files being processed.

ii. Control Fields. Areas used for data being sequenced

or for processing logic controls.

iii. Constants. Data names to minimize compiler

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 29
Rel: July 01, 2005

conversions of literals to internal
temporary storage target attributes.
Avoid the use of literals in the body of
the program.

iv. Counters. To include all accumulators and audit

counters used for numeric operations.

v. Literals. By assigning a variable name to a literal, the

use of the literal in the procedure
division is easily located by the cross-
reference listing. Also, changes to a
literal can be made in a central location
(DATA DIVISION) and thus eliminates
the need to change the literal in the
PROCEDURE DIVISION.

vi. Messages. To simplify changes for descriptors; or to

define all program logic error messages
and their literal text. Assign a control
number and a consistent label for all
error messages and other status
messages.

Example:

10 MSG4-ERR-IN-SEQUENCE PIC X(42) VALUE

‘TRANSACTION OUT OF SEQUENCE-ABORT’.
vii. Switches. The use of switches and flags will be kept

at a minimum. Decision switches should
have the value of "0" or “NAY” to
indicate off-condition and "1" or “YES”
for an on-condition.

Names should be meaningful, self-
documenting, and related to the
condition being tested.

The “88-level” condition data names will
be used when defining all logical
switches.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 30
Rel: July 01, 2005

The "88" condition name will be prefixed
with the elementary variable name that it
is describing.

EXAMPLE-1:

01 TEST-SWITCHES.

05 EOF-PAY-MSTR PIC X(01) VALUE
ZERO.
 88 EOF-PAY-MSTR-ON VALUE ‘1’.
 88 EOF-PAY-MSTR-OFF VALUE
ZERO.

COBOL CODING:

IF EOF-PAY-MSTR-ON

PERFORM 800-CHK-LAST-PAY-MSTR
 THRU 800-CHK-LAST-PAY-MSTR-EXIT.

EXAMPLE-2:

01 TEST-SWITCHES.

05 EMPLOYEE-STATUS PIC X(01) VALUE
ZERO.
 88 EMPLOYEE-IS-NEW VALUE ‘1’.
 88 EMPLOYEE-IS-RETIRED VALUE ‘2’.

88 EMPLOYEE-UNCLASSIFIED VALUE ‘9’.

COBOL CODING:

IF EMPLOYEE-IS-NEW
PERFORM 550-ADD-NEW-EMPLOYEE
 THRU 550-ADD-NEW-EMPLOYEE-EXIT.

viii. Pass-Areas. To contain global data elements that will
be linked-to and passed-from another
external program.

ix. Print Formats. Report headers, title lines, detail lines,

total lines, etc.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 31
Rel: July 01, 2005

x. Tables. To include standard tables, arrays, general
definitions, etc. These may be included
in the program logic via the ++INCLUDE
Panvalet command statement.

3.3.2.3 Level Number

All level numbers must have two (2) digits.

Except for level 01 items, all level numbers should initially be
assigned to values of set increments such as: 05, 10, 15.
Additional level numbers may come about as a result of
maintenance or requirement changes when deeply involved in
checkout.

Level numbers should be indented in a consistent manner for each
record. The COBOL coding form is designed in a manner which is
convenient to indent four columns for each level, but to establish
this indentation as a fixed standard may be unrealistic in a
hierarchy that exceeds four or five levels.

Align all level specifications and attributes of the same numeric-
level rank in the same column.

3.3.2.4 PICTURE

The PIC form is preferred. The PIC clause and the associated
characteristics should be grouped and aligned in a method to
facilitate summing. The following illustration requires a bit more
clerical effort but has an excellent payoff during checkout and
maintenance.

05 FLD-A PIC X(02).
05 FLD-B PIC 9(10).
05 FLD-C PIC X(22).
05 NUM-FLD PIC S9(05)V99.

For easy reference, PICTURE clauses will be aligned vertically
whenever possible beginning in column 42.

When a REDEFINES clause is necessary, it should begin in column
32, and the PICTURE statements within the redefining area should

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 32
Rel: July 01, 2005

be under the REDEFINES.

But the key point is "consistency" to visually associate COBOL key-
words. Use the following formats for attribute descriptions:

• Alphabetic display fields as X(nn);
• Integer numeric fields as 9(nn);
• Decimal fields as S9(nn)v9(nn).

However, when the decimal fraction portion of a field is less
than 3 positions, use "99" or "9" instead of V9(02) and
V9(01) respectively.

• Output suppression fields should be fully expanded to
include editing characters:

Example: PIC ZZZ,ZZZ.99

3.3.2.5 OCCURS

The OCCURS command is used to define relational table data
elements or repeating groups of data elements.

Fixed length group items or tables in the working Storage Section
or Linkage Section may be as long as 131,071 bytes.

Variable length tables must not exceed 32,767 bytes.

When an OCCURS clause is required, the word OCCURS should
start in the same column as the word PIC and PIC should start on
the next line.

Example:

01 TABLE-ITEM OCCURS 10 TIMES
 PIC X(05).

Use no more than one OCCURS...DEPENDING statement in the
overall record description. The overhead from "nested"
OCCURS...DEPENDING is much greater than in a simple fixed
occurrence use.

Put the OCCURS...DEPENDING data at the end of the record,
preceded by all fixed data. Extra overhead is entailed in accessing

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 33
Rel: July 01, 2005

any fixed data following the variable data, since its relative position
is also variable.

When a program must update a file that has an
OCCURS...DEPENDING record definition, the following technique
is recommended.

The State's computer hardware and equipment include, but are not
limited to, vendor supplied information processing equipment; work
stations and terminals; personal computers; mainframe computer
systems and mini-computer systems; servers; supporting peripheral
equipment such as tape drives, disk drives, CD ROM drives and
printers; networking routers, switches, hubs and connectivity
equipment; and processing facilities.

a. Use READ...INTO (or READ the record-as-a-block and MOVE

this block of data to a working-storage 01-variable-name to
specify data-elements needed for processes) to get the
OCCURS...DEPENDING data-elements for the actual
processing logic.

b. In the Working-Storage record description, specify a simple

OCCURS (do not use DEPENDING) with the maximum number
of occurrences.

c. In the Procedure Division, refer only to the simple OCCURS

data-names defined in Working-Storage.

d. Specify a level 01 COMP item to indicate the number of
occurrences. If the number of occurrences changes, modify this
item but not the DEPENDING object.

e. Do not directly change the DEPENDING object, because that

invokes expensive recalculation of record and group sizes and
relative positions, every time the value is modified.

f. At WRITE time move the level 01 item value to the

DEPENDING object. Use WRITE...FROM to transfer the
OCCURS...DEPENDING record from Working-Storage to the
output file.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 34
Rel: July 01, 2005

g. Using APPLY WRITE-ONLY for an output file in the
Environment Division will cause the access method routines to
cut short each output block whenever the remaining space
would not be adequate to handle the maximum number of
occurrences.

h. When using APPLY WRITE-ONLY for the output file description,

specify the data-name of another 01 level item as the
DEPENDING object - not the corresponding field in the record
itself.

i. Be sure to specify COMP and SYNC for the DEPENDING

object; or else a conversion to COMP is needed whenever the
record, group lengths, and positions must be calculated.

j. Do not move groups or records containing variable-length data

to or from the record description, except at READ and WRITE
time.

3.3.2.6 VALUE Clause

The VALUE clause will not be specified within the FILE SECTION.

Numeric data items should always be signed unless an absolute
value is needed.

3.3.2.7 USAGE

Do not code the phrase words: "USAGE IS".

3.3.2.8 COMPUTATIONAL

Internal elementary numeric items should be tagged with the
appropriate computational form whenever their primary use is in
arithmetic operations.

If arithmetic operations are not performed on a numeric data-item, it
should have an alphanumeric picture, “PIC X(09)”.

If arithmetic operations are performed on a numeric item, it should
have a usage of COMP-3 with an odd number of digit positions or
COMP as appropriate.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 35
Rel: July 01, 2005

COMP-3 data is easy to read in a dump listing. Specify S in the
numeric picture definition for COMP-3 items, and specify an odd
number of digits.

With COMP-3, each byte holds two digits for efficient use of space
in memory and on peripheral storage. If the signed data field “PIC
S9(07)” were specified as “COMP-3,” the data field length would be
only 4 bytes, and not 7 bytes.

Avoid using more than 15 digits. Machine instructions cannot
handle over 15 digits, so expensive subroutines are needed to
process larger items.

Keep COMP items to less than five digits. One to four digits require
two bytes; five to nine digits require four bytes; more than nine
require eight bytes and more complex machine instructions.

Do not specify COMP when an unsigned field is larger than 4 digits
or when a single field is larger than 8 digits.

COMP is the best format for items used as subscripts, in extensive
integer arithmetic, or as OCCURS...DEPENDING objects.

Conversion to COMP will occur for subscripts unless COMP is
specified. COMP results in the fastest arithmetic instructions.

Specify S in PICTURE for COMP items, otherwise an extra
instruction is needed to remove the sign whenever the value is
modified.

Except where COMP is best, COMP-3 is the preferred format for all
numeric items. Efficient machine instructions process COMP-3
data directly; other formats often require conversion to COMP-3.

The SYNC clause is encouraged for computational items and must
appear only at the elementary level. Performance is improved
when performing arithmetic operations.

It is not necessary to specify SYNC on the IBM mainframe, but
SYNC items are processed more efficiently. Subscripts should be
defined in the PICTURE with "S" and "COMP SYNC".

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 36
Rel: July 01, 2005

3.3.2.9 RENAMES Clause

Do not use the renames clause. The REDEFINES clause can give
the same result.

3.3.2.10 REDEFINES Clause

All redefining should refer to the originally defined statement
regardless of the number of redefinitions.

All redefines entries must be of equal size and must have the same
level numbers.

See the IBM COBOL reference manual's chapter on "Data
Descriptions" when elements involved in the REDEFINE have the
SYNC option.

3.3.2.11 ERROR-SWITCH

Use the following procedure to handle validation or exception error
test conditions in the application program.

Include an error switch variable named ERROR-SW that is one
byte, and a constant variable named PROG-ID that is eight bytes.

ERROR-SW will be initially set to zero. PROG-ID will contain the
value of the program's Program-ID code.

3.3.3 PROCEDURE: HANDLING EXCEPTION CONDITION

3.3.3.1 FOR EACH EXCEPTION CONDITION

a. Assign a number and constant variable name in WORKING-

STORAGE to each possible error message for easy reference.

b. DISPLAY an appropriate error message to the Control Report.

c. DISPLAY the transaction FIELD, RECORD, or other useful

information regarding the exception. (All error messages should
be numbered and labeled for easy reference.)

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 37
Rel: July 01, 2005

3.3.3.2 FOR PROGRAM EXECUTION STATUS

a. If program ran okay and the application job stream can continue
processing, set the ERROR-SW to "0".

b. If the program has an error in logic and the next program should

not continue processing, set the ERROR-SW to "1".

c. If an audit trail accumulator is out of balance and the next
program must not run, set the ERROR-SW to "2".

d. If the program should abnormally terminate and the next

program must not run, set the ERROR-SW to "A".

3.3.3.3 For the end of job routine

Use the ERROR-SW and set a program user RETURN-CODE and
display the PROD-ID and an appropriate message to the control
report.

RETURN-CODE = 000 IF ERROR-SW = ZEROS.
RETURN-CODE = 111 IF ERROR-SW = ‘1’.
RETURN-CODE = 222 IF ERROR-SW = ‘2’.
RETURN-CODE = 888 IF ERROR-SW = ‘A’.

For each exception condition, print an appropriate error message
similar to the messages in the Control Report found in the Panvalet
test library COBOL structured template program member:
XASA1A1HA1.

3.3.4 LINKAGE SECTION

The LINKAGE SECTION is used to describe data made available from
another program.

Data item description entries in the LINKAGE SECTION provide names
and description, but storage within the program is not reserved since the
data area exists elsewhere.

CICS/VS interface and storage control statements are found in the
LINKAGE SECTION.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 38
Rel: July 01, 2005

Example:

LINKAGE SECTION.

01 DFHCOMMAREA PIC X(010).
01 DB-PCB1 PIC X(100).
01 DB-PCB2 PIC X(100).

NOTE: Heavily used parameter values passed via Linkage Section
should be moved to Working-Storage variables.

3.4 PROCEDURE DIVISION

Programs should be developed in logical functional modules by establishing
module types such as initialization modules, modules for data manipulation,
processing, I/O modules, etc.

The exact structure will be a matter of judgment and the only rigid standard will be
inclusion of a main line module which is a series of perform statements that can be
readily analyzed to determine the logical sequence of events within the program.
Primary purpose of the Main Line is to link all the processing modules together.

3.4.1 Structured Organization

Once the main-line module structure has been determined, it should be
coded at the beginning of the Procedure Division. Other modules should
follow the main-line module in any manner that seems appropriate to the
programmer.

It is recommended that a brief description of the logic be added in front of
each module structure for better program documentation.

3.4.1.1 Structured Paragraph Names

The most important consideration to be given the processing
modules (paragraphs) is that they should be self-indexing.

A consecutive numbering scheme is extremely efficient for this
purpose. A unique number, incremented either by 10 or 100, for
each paragraph-name should be designed so that the paragraphs
and their functions, when read incrementally from top-to-bottom,
would read almost like a pseudo-novel.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 39
Rel: July 01, 2005

The paragraph names for the modules will be numbered according
to their primary function following these ranges (either three or four
digit length):

000-090 Exception Handling Declarative
100-190 Housekeeping and Initialization
200-290 Main-line to Perform Processing Logic
300-390 Error or Exception Processes
400-490 END-OF-JOB Logic
500-890 Processing Logic Function Details
900-990 Input and Output Operations

Paragraph names should be explicit and be assigned only when
necessary for PERFORM or GO TO coding. For readability, either
double space between paragraphs or sections; or else use the
“EJECT” command so each processing paragraph-name could be
at the top-of-page.

Remember, a paragraph name can consist of up to 30 characters.
The use of meaningful and self-documenting names is always
helpful for program maintenance. A sequential prefix will be given
to each paragraph name and assigned in an ascending order with a
minimum increment of 10.

The general format for paragraph names is:

999-VERB-ADJECTIVE-OBJECT

Example:

100-OPEN-FILES.
 OPEN
 INPUT
 OUTPUT
130-GET-TAX-TABLES.

170-GET-MAST-DATA.
 PERFORM 900-READ-MAST.

200-UPDT-MNTH-WAGES.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 40
Rel: July 01, 2005

230-CALC-TAX.

900-READ-MSTR.
 READ AT END

950-WRITE-MSTR.
 WRITE record-name FROM MNTH-TRANS

In addition to data manipulation and processing modules, the READ
and WRITE processing may also include PERFORM modules.

The program design should follow Structured Programming
techniques.

Structured programming involves a systematic "TOP-TO-DOWN"
approach for the design and coding of a program.

A program should follow a "TOP-TO-DOWN" design construction.

That is, the flow of control within a program (or paragraph) should
be from top to bottom on a page. Refer to Appendix-A for a
pseudo-code example of a developed structured program design.

Here we are attempting to reduce the indiscriminate unconditional
jumping from one part of a program to another. Readability is the
key here.

A structured program is subdivided into functional "modules" with
each module consisting of one (1) paragraph.

A module is designed to perform one specific task. This allows
future changes to the program to be localized to a few modules and
possibly reduce modification time.

Overlapping functions between modules should be kept of the
barest minimum.

Within a program, the functional modules occupy a certain position
in a hierarchy such that high level modules control the activities of
subordinate modules. Certain techniques are utilized to control the
flow of activity within the program.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 41
Rel: July 01, 2005

A hierarchical relational system structure chart built from a data
flow diagram, which identified the necessary processing functions
and steps, should be used to visualize how the separate modules
(paragraphs) of the system will logically relate, interact, and/or fit
together.

Each box on the structure chart should be associated with only one
paragraph-name in the program; and then expanded to look like the
pseudo-code structured program logic demonstrated in Appendix-
A.

Each module must have only one point of entrance and one point of
exit. This reduces the number of alternative paths in a program.
3.4.1.2 Structured Coding Techniques

To minimize the effects of computer memory paging, infrequently
executed paragraphs such as: initializing data-elements, end-of-
data wrap-up, error detectors, and/or exception routines should be
grouped together and separated from frequently executed
paragraphs.

Consistent indentation and high visibility of keywords must be used
to identify logical sequences of instructions.

Do not use comma (,) or semi-colon (;).

The period (.) is used when it is needed to end the conditional,
sentence, paragraph name, and section name.

a. Data areas should be initialized in a separate resetable area

and processed just before they are needed to minimize the
possibility of a S0C7, severe system error.

b. References to the DATE, DAY, or TIME register data should be

obtained once only at the first initialization routine and their
values placed in Working-Storage variables.

c. Code only one statement per line.

Example:

Instead of ambiguous coding, such as:

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 42
Rel: July 01, 2005

 MOVE SPACES TO FIELD-A FIELD-B.

For improved readability, code the above as:

 MOVE SPACES TO FIELD-A
 FIELD-B.

Or better yet, code the preceding as:

 MOVE SPACES TO FIELD A.

 MOVE SPACES TO FIELD B.

d. Indent ELSE and always align it with its associated IF.

The reserved word ELSE must be the only text on that line. The
processing statements associated with the ELSE should be
indented four spaces under it.

e. Indent AT END at least four spaces past the READ.

Example:

READ THE-NEXT-RECORD INTO WORKING-FIELDS

 AT END-OF-FILE PERFORM 400-END-FILE-SUMMARY.

f. Indent UNTIL and VARYING eight spaces past the PERFORM.

Example:

PERFORM 700-VERIFY-DATA
 THRU 700-VERIFY-DATA-EXIT

 UNTIL BAD-DATA.

g. Indent the GIVING to line up past the verb ADD or SUBTRACT.

Example:

SUBTRACT ALLOTTED FROM APPROPRIATED
 GIVING ENCUMBRANCE.

h. For programs that require data-type summations, sum all control

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 43
Rel: July 01, 2005

level break accumulators at one place in the source program.

i. Avoid using APPLY WRITE-ONLY in the output file description.

When required for coding logic, specify the data-name of
another level 01 item as the DEPENDING object . Do not use
the corresponding field defined in the data-record itself.

j. Be sure to specify COMP and SYNC for the DEPENDING

object or else a complex conversion to COMP is needed every
time the record and group lengths and positions must be
calculated for each record.

k. Do not move groups or records containing variable- length data,

except once at the READ and/or WRITE time.

l. Start all batch programs with a DISPLAY start-program
message.

m. The STOP RUN or GO BACK must be coded only once in the

mainline processing paragraph.

3.4.2 CALL Statement

CALL statements should be coded in paragraphs that are to be
“performed” when needed.

The CALL subroutine names should be consistent with the standard
naming conventions (do not use the ALIAS feature).

Only the main entry point name will be CALLed.

The parameter names should be aligned on a column.

Example:

CALL "EXTRACTOR"
 USING MAST-IN-DATA
 SELECT-CRITERIA
 ACCEPTED-DATA.

Use the DYNAM link-edit option when calling a subprogram.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 44
Rel: July 01, 2005

3.4.3 Comment Statements

The paragraph names will reflect the sole function of the statements
included in the paragraphs and as such make most programs self
documenting in its purpose and scope.

Comment statements will be used to point out or emphasis relationships and
objectives of processes, comparisons, variables, complex formulas,
derivations of formulas, or uses of tables or arrays.
Each subroutine will contain comments summarizing the source and
function of the subroutine when its purpose is not immediately obvious.
Comments should be made by using the asterisk (*) in column 7.

Example:

 500-GET-VALID-DATA.
* TRANSACTION'S DATE FIELDS ARE VERIFIED AND
* THEIR RANGES ARE COMPARED. KEY FIELDS OF
CUSTOMER
* ID AND ORDER NUMBERS ARE CHECKED AGAINST
TABLES.

Use an asterisk in column 7 to denote comment lines.
Do not use the COBOL NOTE statement.

The use of meaningful comment statements in program is strongly
recommended. Briefly describe the task or function of the module to expand
on the wording used for the paragraph name.

3.4.4 IF-THEN-ELSE Condition Statements

Indent the COBOL statements to identify logical sequences of instructions.
This is especially applicable when defining a sequence of statements to be
executed as a result of an "IF" or "ELSE" statement.

a. Simple conditional tests will be used. Coding compound statements

will be kept to a minimum.

Example of poor coding:

IF FIELD IS EQUAL TO ‘A’ or = ‘B’ OR = ‘C’

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 45
Rel: July 01, 2005

Must be coded as:

IF FIELD = ‘A’ or
 FIELD = ‘B’ or

 FIELD = ‘C’

b. Each compare condition should be explicitly stated. Use parenthesis

to assure logical groupings of operands.

Example:

IF (A IS NOT GREATER THAN B) OR

 (C IS EQUAL TO D),....

c. Do not use compound negative conditional tests.

Example:

IF A IS NOT EQUAL TO NOT C

Example:

IF NOT B IS NOT LESS THAN NON-D

Example:

IF NOT A IS NOT = B OR NOT C = D

3.4.5 COMPUTE Statement

The use of the COMPUTE statement is encouraged. It is easy to check
out the formula and it is more self-documenting.

Items referenced by arithmetic verbs should all be COMP or COMP-3.
Items added or subtracted should have the same number of decimal
places.

For items not in ideal formats of same attributes and same decimal
lengths, move them to ideal items in Working-Storage before processing.

For computations involving several arithmetic operations, the COMPUTE
verb is more efficient than a sequence of separate arithmetic verbs.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 46
Rel: July 01, 2005

However, the precision of the intermediate results cannot be controlled
using COMPUTE, and may not generate the expected final report.

For computation operations, fixed-point arithmetic is calculated much
faster than floating-point arithmetic, however, floating-point arithmetic is
much more precise and accurate than fixed-point.

The relative speeds of the arithmetic operations are as follows:

ADD or + fast
SUBTRACT or - fast
MULTIPLY or * slow
DIVIDE or / slower
** (exponentiation) very slow

Avoid costly errors from multiplication by 0 or 1, or division into 0 by
careful arrangement of the logic, or by coding an extra IF to bypass the
calculation.

Eliminate unnecessary use of the ROUNDED clause.

Consider rounding directly in a calculation for values which always have
the same sign, but be sure the rounding formula is documented to
eliminate possible misunderstanding or misinterpretation in later
maintenance of the program.

Example for two decimal place accuracy after transaction:

COMPUTE PENALTY-PERCENT = RATE * TIME + 0.005.

The COMPUTE verb should always be used when multiple arithmetic
operators are involved. Consider two sets of equivalent code:

Poor Code:

MULTIPLY B BY B GIVING B-SQUARED.
MULTIPLY 4 BY A GIVING FOUR-A.
MULTIPLY FOUR-A BY C GIVING FOUR-A-C.
SUBTRACT FOUR-A-C FROM B-SQUARED GIVING RESULT-1.

COMPUTE RESULT-2 = RESULT-1 ** 0.5.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 47
Rel: July 01, 2005

SUBTRACT B FROM RESULT-2 GIVING NUMERATOR.
MULTIPLY 2 BY A GIVING DENOMINATOR.
DIVIDE NUMERATOR BY DENOMINATOR GIVING X.

Improved Code:

COMPUTE X = (-B + ((B*B) - (4 * A * C)) ** 0.5) / (2 * A).

Both (of the above) sets of code apply to the quadratic formula,

X = - B + square-root (BB - 4AC).
 2A

It is easier to determine what is happening from the single COMPUTE
statement. It is difficult to realize the cumulative effect of the 8 individual
arithmetic statements. Interpretation of the unacceptable code is further
clouded by the mandatory definition of data names for intermediate
results, e.g., RESULT-1, RESULT-2, SQUARED, X, NUMERATOR, etc.

Parentheses are often required in COMPUTE statements to alter the
normal hierarchy of arithmetic operations.

For example, the parentheses are required around “2 * A” in the
denominator. If they had been omitted, the numerator would have first
been divided by “2” and then the quotient would have been multiplied by
“A”.

Sometimes parentheses are optional to the compiler, but should be used
to clarify things for the programmer. The parentheses around “4*A*C” do
not alter the normal order of operations and hence are optional.

3.4.6 Condition Names

Meaningful condition names in the DATA DIVISION make for excellent
documentation and can be a great aid in revealing the program logic.

3.4.7 Conditional Tests

To minimize misunderstanding, the relational operators " > " and " < "
should be coded 'GREATER THAN' and 'LESS THAN'. It makes the
program listing more self documenting and more narrative and prose-like.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 48
Rel: July 01, 2005

Do not use implied conditional subjects or operators.

Example:

IF X=FIVE OR SIX OR Y OR TWO

3.4.8 DISPLAY Statement

The DISPLAY UPON CONSOLE is permitted only to designate the start of
a batch program, or the result of the execution of a batch program.

Any other use requires prior approval from the ICSD-PSB Production
Services Branch Chief. An important exception to this rule is a situation
requiring operator action, such as, multiple uses of tapes for Read Only
then Read/Write.

If the DISPLAY statement is used, a comment line should be noted in the
FILE-CONTROL paragraph stating its use in the program.

DISPLAY messages should be identified by the PROGRAM-ID which
issues it.

Example:

DISPLAY ‘START PROGRAM –ID: XLSA1A1S’.
DISPLAY ‘ABNORMAL END OF PROGRAM: XLSA1A1L’.
DISPLAY ‘NORMAL END OF PROGRAM - XLSA1A1L’.

3.4.9 GO TO Statement

Do not use the DEPENDING ON format. Use separate nested "IF"
statements instead.

Use of GO TO will be kept to a bare minimum. The permissible GO TO
transfer control to an "EXIT" paragraph-name.

The "GO TO" statement when employed should direct control of the
program to a point subordinate to it within the same paragraph.

Upward processing control movement is not allowed. The "GO TO"
statement should not be used to transfer control to a point outside of the
module in which it resides.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 49
Rel: July 01, 2005

Example:

200-SAMPLE-GOTO.
 READ TRAN-REC INTO WS-TRAN-REC
 AT END MOVE HIGH-VALUES TO PREV-ID.
 IF PREV-ID = HIGH-VALUES
 GO TO 200-SAMPLE-GOTO-EXIT.
 MOVE NEW-ID TO PREV-ID.
200-SAMPLE-GOTO-EXIT.
 EXIT.

When it is necessary to loop back to the beginning of a module, instead of
using the “GO TO” statement, use “PERFORM paragragh-name” THRU
“paragraph-name-exit”:

PERFORM 520-CHECK-OCCURS-LIMIT
 THRU 520-CHECK-OCCURS-LIMIT-EXIT
 VARYING UNTIL.....
PERFORM ... UNTIL
PERFORM ... TIMES

By doing so, the condition(s) under which the looping is undertaken is well
defined.

3.4.10 IF Statement

Nested IF statements are permitted. Nesting the "THEN-ELSE" condition
should be limited to no more than 3 levels. When nesting is used, the
proper consistent alignment of paired IF-THEN-ELSE statements is
required for ease of maintenance. Consistent indentation shows the
subordination relationships.

Example:

IF condition-1
 IF condition-2
 IF condition-3
 statement-3-1
 ELSE
 statement-3-2
 ELSE

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 50
Rel: July 01, 2005

 IF condition-4
 statement-4-1
 ELSE
 statement-4-2
ELSE
 IF condition-5
 IF condition-6
 statement-6-1
 ELSE
 statement-6-2
 ELSE
 statement-5-2.

The ONLY allowable exception to these relational indentations is for more
than three (3) mutually exclusive case selection criteria.

Example:

IF GET-A-RECORD
 PERFORM 210-GET-A-RECORD
 THRU 210-GET-A-RECORD-EXIT
ELSE
IF START-BROWSE
 PERFORM 220-START-BROWSE
 THRU 220-START-BROWSE-EXIT
ELSE
IF GET-NEXT-RECORD
 PERFORM 230-GET-NEXT-RECORD
 THRU 230-GET-NEXT-RECORD-EXIT
ELSE
IF GET-PREVIOUS-RECORD
 PERFORM 240-GET-PREVIOUS-RECORD
 THRU 240-GET-PREVIOUS-RECORD-EXIT
ELSE
 PERFORM 300-WRONG-GET-REQUEST
 THRU 300-WRONG-GET-REQUEST-EXIT.

In a sequence of mutually exclusive IF-ELSE statements, try to order the
conditional statements from most likely test-condition, down to the least
likely, but do not sacrifice program readability or understandability.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 51
Rel: July 01, 2005

Use the IF-ELSE conditional statement to isolate groups of code that do
not require processing for every execution path.

Do not place any Input/Output statement within the conditional IF-ELSE
conditional statements.

The THEN clause is optional. When coded, it must be on a line by itself.

Example:

IF condition-1
THEN
 IF condition-2
 THEN
 IF condition-3
 THEN
 statement-3-1
 ELSE
 statement-3-2
 ELSE
 IF condition-4
 THEN
 statement-4-1
 ELSE
 statement-4-2
ELSE
 IF condition-5
 THEN
 statement-5-1
 ELSE
 statement-5-2.

Use the negative conditional IF only when the negative statement is more
straight-forward, explicit, much clearer or eliminates the use of "THEN
NEXT SENTENCE".

Example:

IF VARIABLE-NAME NOT NUMERIC
 PERFORM 500-NOT-NUMERIC
 THRU 500-NOT-NUMERIC-EXIT.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 52
Rel: July 01, 2005

3.4.11 LOGICAL Comparisons

For numeric comparisons, the items compared should both be COMP or
COMP-3 be both signed or both unsigned, and have similar PICTUREs.

Numeric data must be either COMP or COMP-3 for the machine compare
instructions.

Comparing numeric items necessitates very costly conversion and
decimal point alignment steps, unless the compared items have identical
formats.

COMP-3 is easier to trace in a dump, but COMP is slightly faster than
COMP-3.

The tests “IF NUMERIC” and “IF ALPHABETIC” class conditional
statements may be quite essential but should be used with care. They are
very costly, and use should generally be limited to validating raw input
data.

3.4.12 MOVE Statement

Do not use the MOVE CORRESPONDING. It does not document well for
readability, and can be difficult to maintain if exceptions occur at some
later date.

When using "MOVE ... TO ..." for a group of "Moves", the word "TO"
should be aligned on the same column to improve readability.

Example:

MOVE PAY-SSN TO PRT-SSN.
MOVE PAY-NAME TO PRT-NAME.
MOVE PAY-ADDRESS TO PRT-ADDRESS.

a. When using an alphanumeric data-name with literal values (or with

WORKING- STORAGE variable values enclosed in single quotes),
before the required MOVE is processed, verify the literal will be moved
to a target item that has the same number of characters. If the moved
literal is shorter than the receiving area, the statement actually results
in an efficient move of the literal followed by an inefficient move of
spaces to clear the remaining character positions.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 53
Rel: July 01, 2005

b. Literals should be filled out (padded) unless that would entail a large

number of trailing spaces (say 12 or more). Literal moves are most
efficient when the sending item is at least as large as the receiving
item.

c. It is more efficient to define constant data-element item of a series of

spaces or zeros in Working-Storage and MOVE from those variable-
names, rather than by using the figurative constant SPACES or
ZEROS in the MOVE statements.

d. The recommended technique to save CPU time and conserve memory

is to define a figurative constants with a maximum size specification
and let the COBOL compiler truncate it during the data MOVE.

Example:

01 INIT-CONSTANTS.
 05 ALL-SPACES PIC X(80) VALUE
SPACES.
 05 ALL-HIGH-VALUE PIC X(100) VALUE
HIGH-VALUE.
 05 ALL-LOW-VALUE PIC X(100) VALUE
LOW-VALUE.

Consider group-level moves rather than separate moves of elementary
items when PICTURE definitions of sending and receiving items
correspond.

The numeric move is always most efficient if both items are COMP or
COMP-3, have the same number of decimal places (if any), and both (or
neither) have S in PICTURE. However, if items are initially not aligned, a
planned move to ideally formatted items in Working-Storage will save
repeated conversions.

Moves to an item which is the object of an OCCURS ... DEPENDING
clause should be avoided at all times.

3.4.13 ON Condition

Eliminate unnecessary use of ON SIZE ERROR clause. Eliminate by
using such techniques as checking for zero denominator before dividing,

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 54
Rel: July 01, 2005

etc.

3.4.14 OPEN/CLOSE Statements

Use a single OPEN statement rather than separate OPEN statements for
files opened at the same time. Use of a single OPEN statement reduces
routine loading time. System routines required for OPEN are referenced
once for each OPEN statement regardless of the number of files specified
in the statement.

Sometimes a programmer uses a file over and over to hold temporary
data, repeating OPEN-WRITE-CLOSE and OPEN-READ-CLOSE
sequences many times. These applications should be studied carefully to
see whether a Working-Storage table could be used instead.

OPEN and CLOSE are very costly statements and are designed to be
used only once or a couple of times by each program.

The OPEN/CLOSE statement should be executed only once per program.

The OPEN/CLOSE statement cannot be used in CICS programs.

3.4.15 PERFORM Statement

To eliminate the possibility of processing logical "fall-thru", use the format:
 PERFORM procedure-name-1 THRU procedure-name-2.
The procedure-name-2 will be an EXIT for the procedure-name-1 module.

Example:

PERFORM 510-GET-VALID-TRANS
 THRU 510-GET-VALID-TRANS-EXIT.

Perform paragraph-names only, do not perform section-names.

The PERFORM UNTIL option is encouraged. Its use is usually obvious
and is easy to check out. If possible, the program logic must check the
parameters affecting the routine to assure it will not remain in a loop.

The PERFORM VARYING format is permissible but the other forms are
preferable.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 55
Rel: July 01, 2005

When using the VARYING format, try to place numeric computations
outside of the loop. When using the varied variable's value for
computations that depend on the number of times the paragraph is
performed, do the computations after the loop processing.

The VARYING or UNTIL clause should be indented on a line separate
from the PERFORM verb.

Example:

PERFORM 510-GET-VALID-TXN
 THRU 510-GET-VALID-TXN-EXIT
 UNTIL TXN-LAST-RECORD.

When possible, use multiple separate PERFORM statements instead of
NESTED PERFORM statements.

3.4.16 Program Switches

Program switches should be kept at a minimum. However program
initialization switches and end-of-job switches are permitted since their
use and need is usually apparent. Switches that are set only once per
program run are also obvious and should be set via a control card. Such
as selecting only certain Counties to be processed; or selecting only
certain reports to be generated. In any event, detailed annotation of
switches is required.

The recommended switch practice is to set a switch as a result of a logical
controlling condition. A preferable method is to test the condition again. If
the condition is no longer present, anticipate the situation and route the
program through a different series of modules.

In place of a separate switch to identify an EOF condition, the non numeric
literal KEY field of the record may be set to high-value. The KEY field can
then be tested for the EOF condition. The high-value in the KEY field
simplifies the overall logic to complete processing of other input files. But
a separate switch offers more flexibility.

If switches are used, use the level-88 feature and variable names that
explain the condition.

Example:

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 56
Rel: July 01, 2005

05 EYES-COLOR PIC X(02) VALUE SPACES.
 88 EYES-ARE-BLUE VALUE "BL".
 88 EYES-ARE-BROWN VALUE "BR".
 88 EYES-ARE-GREEN VALUE "GR".
 .
 .
 .
IF EYES-ARE-BLUE
 PERFORM 500-BLUE-EYES-RTN
 THRU 500-BLUE-EYES-RTN-EXIT
ELSE
IF EYES-ARE-BROWN
 PERFORM 510-BROWN-EYES-RTN
 THRU 510-BROWN-EYES-RTN-EXIT
ELSE
IF EYES-ARE-GREEN
 PERFORM 520-GREEN-EYES-RTN

 THRU 520-GREEN-EYES-RTN-EXIT.

3.4.17 Print Report Format

For traditional reporting every time you start to edit the detail data-fields in
the line, move all-spaces to a redefined variable that has a length to cover
the entire print line area.

Either define a variable-name defined as all-spaces, or specify VALUE
SPACES in another record layout definition, and MOVE this WORKING-
STORAGE variable to the entire print line area.

Consider moving spaces to each specific field position that has been
recently modified, if blanking the whole line area via a group level name is
not desired.

3.4.18 Program Audit Control

Each program must have an audit control report. This report must include
the following when applicable:

a. Program identification name as found in IDENTIFICATION DIVISION.

b. Report headers that identify the State, Department, Division, Branch,

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 57
Rel: July 01, 2005

and when applicable, the Section of the entity to receive the report.

c. Centered Title containing a description like: "PROGRAM CONTROL
REPORT" or “STATISTICAL/AUDIT REPORT”.

d. The operating system run date.

e. Any input control statements or parameter data.

f. Any message for any encountered error or exception condition.

g. Input-Reject-Output record counts for files.

h. Any calculated Batch control total.

3.4.19 Program Constants

Data names should be used to express constant values instead of literals.
This promotes easier program maintenance and also provides for better
readability and understanding.

Example:

05 VALUE-9 PIC 9(01) VALUE ‘9’.
05 VALUE-X PIC X(01) VALUE ‘X’.
05 ONE PIC S9(05) VALUE +1.
05 TWO PIC S9(05) VALUE +2.

3.4.20 Prohibited or Restricted Verbs

a. The ALTER statement is not permitted.

b. The ACCEPT FROM CONSOLE option is not permitted.

To use this option requires prior written approval from the ICSD PSB
Chief. If used, it should be noted in the FILE-CONTROL paragraph in
a comment.

c. The EXAMINE verb is not permitted.

d. For any CICS/VS program, reserved words ACCEPT, DATE, DAY,

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 58
Rel: July 01, 2005

CURRENT-DATE, DISPLAY, EXHIBIT, INSPECT, SIGN IS
SEPARATE, STOP RUN, TIME, and UNSTRING are not allowed.

3.4.21 READ Verb

Data from records are to be read into Working-Storage defined area, and
not to the FD record description field.

Use the READ...INTO...WORKING-STORAGE-INPUT-AREA format.

This form provides a readable trace in memory dumps.

Use the "AT END" or "INVALID KEY" clauses for any "READ" statement.

Code only one READ statement for each file in a paragraph to be
PERFORMED when data is needed.

The advantages of one functional READ or WRITE paragraph for each file
are:

a. Coding can be added to count the processed records.

b. The file records can be reformatted without changing the program's

logic.

c. DEBUG statements can be easily added to DISPLAY records.

The file input area should be filled with all high values at end-of-file unless
the end-of-file condition forces an end-of-job condition. This particular
approach is in the interest of uniformity for EOF logic rather than for
gaining any program performance or efficiency advantage.

Whenever possible, avoid having more that one record per file in core at
any one time. For example, when master record (with KEY=121) is in
core, do not read the next record (with KEY=122) into core until all
processing on record (with KEY=121) has been completely processed.

3.4.22 Record Counts

Record Counts should be maintained for all input and output files.
Definition of counter names should be meaningful and representative of
the file’s function or purpose. Counters serve as a good debugging tool

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 59
Rel: July 01, 2005

and should be printed or displayed as part of the end of job routine
whether the run is successful or not.

3.4.23 Report Writer Feature

Do not use any COBOL Report Writer Facility. The COBOL FOR MVS and
VS COBOL II compilers do not directly support REPORT WRITER
FACILITIES.

3.4.24 Sequence Check

Sequence checking should be performed whenever specific sequence is
required of an input file. Any sequence error message generated should
include previous and current keys as well as current record count.
FACILITIES.

3.4.25 Sort Feature

The internal COBOL SORT verb should be avoided for these important
reasons:

• The COBOL program becomes a subroutine to the SORT verb.
• If program abends, the resulting dump is almost useless.
• Programs using CICS cannot use SORT.

The CASORT SRAM, external utility is the recommended method for
sorting.

The SORT feature, if it must be used, is for very short and very small files
only. The record released to the SORT should be an exact image of the
input record with a sort key tagged on to the left-most position.

SORT-CORE-SIZE will default to a value specified at the time the SORT
program was installed. This MAXSIZE should always be used. Give
SORT as much information as possible.

All file SORTS will be accomplished through the external procedures using
the computer operating system utility SORT program.

Example:

PROC=SORT

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 60
Rel: July 01, 2005

PROC=SORTD
PROC=REGSORT
PROC=BIGSORT

Use simple key fields. Combine adjacent key fields to build super
description keys.

The COBOL Optimizer will cause unpredictable results for the
"USING/GIVING" clauses with the internal SORT feature.

3.4.26 STRING/UNSTRING Command

The STRING/UNSTRING commands should be used with care. A
character-by-character MOVE loop is more efficient.

It is more efficient to REDEFINE the data as a table of one-character
items and to unstring the data with IF and MOVE statements.

3.4.27 Subscripting and Indexing

The Indexed form is preferable over subscripting, but both forms are
acceptable. The Indexed form is more efficient and produces better
documentation.

Indexing is usually more efficient than subscripting for sequential table
searching or when the same subscript is used several times in relation to
the number of times its value is changed.

Always specify COMP SYNC and S in PICTURE for any item used as a
subscript.

Index variables are not interchangeable between tables.

If a table item is processed extensively (that is, many references to the
same item in the same logic path or loop) move the table item to a fixed
data-element in Working-Storage, then direct all the references to the
fixed item.

The command, SET to a literal value, is fast. However, SET to a value of
a data name may require format conversion and may slow the program’s
performance.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 61
Rel: July 01, 2005

Subscript with data names, do not use literals as subscripts.

3.4.28 Tables

A fixed length table or fixed length group items must never exceed
131,071 bytes in length.

The maximum storage size of varying tables is 32,767 bytes.

When coding Table Entries, separate line entries should be made for each
item in the table. Separate entries will aid in the correction of entries and
provide for better readability. xx

Example, Bad Code:

05 MONTH-LITERAL-TABLE.
10 MONTH-TEST PIC X(18)
 VALUE ‘JANUARY FEBRUARY’.

Example, Good Code:

05 MONTH-LITERAL-TABLE.
 10 FILLER PIC X(09) VALUE ‘JANUARY’.
 10 FILLER PIC X(09) VALUE ‘FEBRUARY’.

When working with TABLES, always use TABLE-MAXIMUM checks to
keep from exceeding the boundaries of the TABLE.

For efficiency, put frequently accessed items at the beginning of the
TABLE for sequential searches.

Do not alter table entries in their table location. Move the entries to
working storage areas and modify those area and then move the values
back to the table locations.

Any table whose size or values may change during a program run must be
designed to be loaded each time the program is executed.

3.4.29 Termination Processing

After all input and output records have been appropriately been read and
acted upon, the program will have end-of-execution processes that
summarize the number of records that were read, accepted, rejected,

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 62
Rel: July 01, 2005

written to electronic media, or displayed on a printed listing.

3.4.30 Normal Processing

Normal expected termination processing for the control report from batch
programs should include the following:

a. Audit trail summarizing any cumulated fields.

b. Total count of each input and output data set.

c. Message sent to the operator’s console to identify the program name

and its normal ending status.

3.4.31 Abnormal Processing

Abnormal termination processing for control reports should have the
following:

a. A message to explain the cause for the termination;

b. The record key and fields causing the termination;

c. The input/output counts for the data fields;

d. A return condition code as specified for the standard ERROR-SW;

e. An abnormal end of job message to the operator’s console and to the

printed control report.

3.4.32 Trace Verb

Do not use the TRACE verb for any CICS program.

The RESET TRACE Verb consumes time even if TRACE is never
activated. Therefore, it is important to remove these statements when
they are no longer needed for debugging.

3.4.33 WRITE or REWRITE Statement

The "WRITE FROM" format will be used.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 63
Rel: July 01, 2005

Example:

WRITE PRINT-DETAIL-RECD FROM WORKING-OUTPUT-AREA.

The "AFTER ADVANCING" format is to be used instead of "AFTER
POSITIONING".

WRITE statements will be kept to a minimum. The most CPU time is
consumed to process COBOL I/O verbs. Put WRITEs in paragraphs to be
PERFORMED.

Line counting is required for overflow printed report testing.

The REWRITE verb is a very time-consuming verb. Often several
successive transactions apply to the same record. Be sure your program
waits to REWRITE a record until after no further use can be made of the
record, and all changes have been made to it.

4 COBOL ENVIRONMENTS

COBOL environments are related to conventions and techniques for “batch” and
“real-time” programs. Batch programs will use VSAM (virtual sequence access
methods) to process permanently stored data on direct access storage devices.
Real-time programs will use CICS (command information controlled sequence) in
systems areas defined and controlled by the ICSD Systems Services Branch
(SSB).

4.1 VSAM PROCESSING IN COBOL/VS

The RECORD KEY must be coded for keyed sequence data sets. If
ALTERNATE RECORD KEY is used, there must be a job control JCL DD
Statement defined for the path associated with the alternate index.

The FILE STATUS must be checked after each OPEN/CLOSE or READ/WRITE
command to assure successful completion.

For the SELECT...ASSIGN Statement, the "ASSIGN TO" will not have the "UT-S"
code.

Before each direct-access READ, check the last record read. Data clustering is
quite common, and you may very often already have the record needed.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 64
Rel: July 01, 2005

4.2 CICS/VS PROCESSING IN COBOL/VS

The format for CICS Statements will have only one activity on one line. Any
parameters will be indented five spaces under the "EXEC CICS" command. The
"END-EXEC" will be aligned with the corresponding "EXEC CICS".

Example:

EXEC CICS READ NEXT
 DATASET ('NAMEIDX')
 INTO (STUDENT-RECORD)
 RIDFLD (STUDENT-NAME)
 LENGTH (REC-LENGTH)
END-EXEC.

4.3 CICS Programming Techniques and Restrictions

a. OBJECT PROGRAM SIZE must not exceed 256K.

b. WORKING-STORAGE plus Task Global Table (TGT) must not exceed 64K.

c. Always code "GOBACK" as the last statement in a program to act as a "CICS

RETURN". The default COBOL's "STOP RUN" will terminate CICS.

d. Do not code FILE SECTION (FD) nor any SELECTs.

e. Do not use any Input/Output verbs such as:

 OPEN/CLOSE REPORT WRITER
 READ/WRITE SEGMENTATION
 SORT CURRENT-DATE
 ACCEPT/DISPLAY DAY/DATE/TIME
 EXHIBIT/TRACE STOP RUN
 INSPECT/UNSTRING

f. Do not use the following COBOL compiler options:

COUNT DYNAM SYST
FLOW SYMDMP TEST
STATE ENDJOB STXIT

g. Move LOW-VALUES to the map area in WORKING- STORAGE before

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 65
Rel: July 01, 2005

moving data to the map area.

4.4 OPERATING SYSTEM PROCESSING PROCEDURES

The COBOL programmer communicates with the operating system, job
scheduler, and programs with operating system (JCL) job control statements.

ICSD has established seven utility cataloged procedures to be used during the
development and testing phases of an application in a COBOL or CICS
environment. Five procedures are used to support COBOL syntax and logical
checking; and two are used to support the CICS environment.

The default parameters selected for each step within these cataloged utility
procedures were chosen to provide effective control aids for the job scheduler to
regulate the execution of steps, to retrieve and determine the disposition of data
allocating resources, and to communicate effectively with the operators and
programmers. The following is an example of an acceptable override for the
COBOL execution statement:

// PARM.COBOL=’APOST,NOADV,LIB,FLAG(W)’
// PARM.LKED=’LET,LIST’

The IBM OS/VS COBOL Compiler and Library Programmer's Guide has detailed
information on the selected parameters and options in the chapter: "Using the
Catalogued Procedures".

4.4.1 COBOL-FOR-MVS Procedures

There are five utility catalogued procedures to be used during the
development and testing of a COBOL application program. These
catalogued COBOL procedures incorporating Computer Associates
CA-OPTIMIZER that will be used to debug the logic of the programs or
test the system job flow controls, they are:

a. XCOBWC - Compile with Optimizer to test program statement syntax.

b. XCOBWCL - Compile with Optimizer and produce load module to be

stored in ICSD.LINKLIBT.

c. XCOBWCLX - Compile with Optimizer and produce load module to be

stored in ICSD.TESTLIBT.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 66
Rel: July 01, 2005

d. XCOBWCLR - Compile with Optimizer and generate REPORT-
WRITER executable load module to be stored in ICSD.LINKLIBT.

e. XCOBOCLG - Compile with Optimizer, store generated load module in

a temporary data set, and execute the program.

For further information on the utility catalogued COBOL procedures
incorporating the OPTIMIZER, see the COBOL/VS CA-OPTIMIZER
Procedure users guide distributed by the Technical Standards and
Methods Section of the EDP Division.

4.4.2 COBOL With CICS/VS Procedures

COBOL programs developed for real-time interactive application
transactions that use the IBM OS/CICS/VS may be processed via the
following catalogued utility procedures.

a. CICOBWC

This procedure is used to compile COBOL source stored in a partitioned
data set like the programmer's or department's TSO data sets. No load
module will be generated.

b. CICOBWCL

This procedure is used to compile COBOL source statements stored in a
partitioned data set like the programmer's or department's TSO data sets.
 The load module generated must be defined in the symbolic parameter
"NAME=", and this name will be stored in "CICSVS.LINKLIBT".

c. CIVCCOB

This procedure is used to compile COBOL source statements stored in the
PANVALET library "EDPD.PANVTEST". This procedure will not generate
an object load module. The PANVALET control statements are specified
after a job control statement:

d. CIVCCOBL

This procedure is used to compile COBOL source statements stored in the
PANVALET library, "EDPD.PANVTEST". This PANVALET control
statements are specified after the job control statement:

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 67
Rel: July 01, 2005

The load module generated must be defined in the procedure symbolic
parameter "NAME", and this name will be stored as a member of
"CICSVS.LINKLIBT".

4.5 Test-To-Production Procedures

COBOL applications that have been tested to the satisfaction of the system
requestor, and whose operations will be transferred from the ICSD Client
Services Branch to the ICSD-PSB should have all tested object load modules
transferred from the test library, "EDPD.LINKLIBT" to the production library
"EDPD.LINKLIBP".

Any application to be handled by the ICSD-PSB should have load modules
stored in "EDPD.LINKLIBP". For security and control, the application project
manager must submit a “LOAD MODULE REQUEST” to ICSD-PSB Control Unit.

The physical transfer of the application's load module from “EDPD.LINKLIBT”
occurs immediately when the transfer job executes. The actual delete of the load
modules from "EDPD.LINKLIBT" is done once a day during the evening
scheduled System Backups.

5 APPENDIX A: Structured Program Design

This example illustrates the 3 step transition from a data-flow pictorial diagram, to a
functional hierarchical structured chart, and then to a pseudo code of the logical
algorithm.

The structure and syntax for pseudo code is independent of any formal computer
programming language. The resulting pseudo code serves as the basis for the COBOL
program solution.

The details for the program comes from expanding the information defined in the
requested system's specifications. The needed instructions that conform to the solution
are expanded into the appropriate program syntax structures.

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 68
Rel: July 01, 2005

Example of Pseudo-Code:

REPEAT BEST-SOLUTON
 WHILE THERE-IS-MORE-RAW-DATA

BEST-SOLUTION
 PROCESS GET-GOOD-INPUT
 PROCESS PROCEDURES-FOR-BEST-SOLUTION
 PROCESS PUT-OUT-SOLUTION
BEST-SOLUTION-ENDED

GET-GOOD-INPUT
 PROCESS GET-RAW-INPUT-DATA
 PROCESS EDIT-RAW-INPUT-DATA
 IF BAD-RAW-INPUT
 THEN
 PROCESS SHOW-BAD-INPUT
 ELSE
 PROCESS GOOD-DATA-RECORD
 PROCESS DISPLAY-GOOD-INPUT
GET-GOOD-INPUT-ENDED

PUT-OUT-SOLUTION
 PROCESS FORMAT-SOLUTION
 PROCESS WRITE-SOLUTION-TRANSACTION
 PROCESS DISPLAY-SOLUTION
PUT-OUT-SOLUTION-ENDED

6 APPENDIX B: Structured COBOL Skeleton

A Copy of COBOL-FOR-MVS Model source listing follows:

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 69
Rel: July 01, 2005

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 70
Rel: July 01, 2005

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 71
Rel: July 01, 2005

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 72
Rel: July 01, 2005

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 73
Rel: July 01, 2005

Number: 11.10
Effective: 07/01/05

Department of Accounting and General Services
Information and Communication Services Division
COBOL VS Standards and Conventions

COBOL VS Standards and Conventions Page 74
Rel: July 01, 2005

	INTRODUCTION
	1.1 Purpose
	1.2 Scope
	1.3 Applicability
	1.4 Mainframe Computer Processing
	1.5 Mainframe Production Job Management
	1.6 Comments and Suggestions

	COBOL DESIGN STANDARDS
	2.1 IDENTIFICATION DIVISION
	2.1.1 PROGRAM-ID
	2.1.2 AUTHOR
	2.1.3 REMARKS

	 ENVIRONMENT DIVISION
	2.2.1 CONFIGURATION SECTION
	2.2.2 INPUT-OUTPUT SECTION
	2.2.2.1 FILECONTROL
	2.2.2.2 IOCONTROL

	 DATA DIVISION
	2.3.1 FILE SECTION
	2.3.1.1 Record Description Entries
	2.3.1.2 APPLY WRITEONLY
	2.3.1.3 PICTURE

	2.3.2 WORKING STORAGE SECTION
	2.3.2.1 WORKINGSTORAGE CONVENTIONS
	2.3.2.2 WORKINGSTORAGE Organization
	2.3.2.3 ERRORSWITCH
	2.3.2.4 COMPUTATIONAL
	2.3.2.5 OCCURS
	2.3.2.6 REDEFINES Clause
	2.3.2.7 RENAMES Clause
	2.3.2.8 USAGE Clause
	2.3.2.9 VALUE Clause

	2.3.3 LINKAGE SECTION

	PROCEDURE DIVISION

	COBOL CODING STANDARDS
	3.1 IDENTIFICATION DIVISION
	3.1.1 PROGRAM-ID
	3.1.2 AUTHOR
	3.1.3 INSTALLATION
	3.1.4 DATEWRITTEN
	3.1.5 DATE COMPILED
	3.1.6 REMARKS

	3.2 ENVIRONMENT DIVISION
	3.2.1 CONFIGURATION Section
	3.2.2 INPUT-OUTPUT Section
	3.2.2.1 FILECONTROL Paragraph
	3.2.2.2 IOCONTROL Paragraph

	3.3 DATA DIVISION
	3.3.1 FILE SECTION
	3.3.1.1 File Description Entries
	3.3.1.2 File Description Entries

	3.3.2 WORKINGSTORAGE SECTION
	3.3.2.1 WORKINGSTORAGE Conventions
	3.3.2.2 WORKINGSTORAGE Organization
	3.3.2.3 Level Number
	3.3.2.4 PICTURE
	3.3.2.5 OCCURS
	3.3.2.6 VALUE Clause
	3.3.2.7 USAGE
	3.3.2.8 COMPUTATIONAL
	3.3.2.9 RENAMES Clause
	3.3.2.10 REDEFINES Clause
	3.3.2.11 ERRORSWITCH

	3.3.3 PROCEDURE: HANDLING EXCEPTION CONDITION
	3.3.3.1 FOR EACH EXCEPTION CONDITION
	3.3.3.2 FOR PROGRAM EXECUTION STATUS
	3.3.3.3 For the end of job routine

	3.3.4 LINKAGE SECTION

	3.4 PROCEDURE DIVISION
	3.4.1 Structured Organization
	3.4.1.1 Structured Paragraph Names
	3.4.1.2 Structured Coding Techniques

	3.4.2 CALL Statement
	3.4.3 Comment Statements
	3.4.4 IF-THEN-ELSE Condition Statements
	3.4.5 COMPUTE Statement
	3.4.6 Condition Names
	3.4.7 Conditional Tests
	3.4.8 DISPLAY Statement
	3.4.9 GO TO Statement
	3.4.10 IF Statement
	3.4.11 LOGICAL Comparisons
	3.4.12 MOVE Statement
	3.4.13 ON Condition
	3.4.14 OPEN/CLOSE Statements
	3.4.15 PERFORM Statement
	3.4.16 Program Switches
	3.4.17 Print Report Format
	3.4.18 Program Audit Control
	3.4.19 Program Constants
	3.4.20 Prohibited or Restricted Verbs
	3.4.21 READ Verb
	3.4.22 Record Counts
	3.4.23 Report Writer Feature
	3.4.24 Sequence Check
	3.4.25 Sort Feature
	3.4.26 STRING/UNSTRING Command
	3.4.27 Subscripting and Indexing
	3.4.28 Tables
	3.4.29 Termination Processing
	3.4.30 Normal Processing
	3.4.31 Abnormal Processing
	3.4.32 Trace Verb
	3.4.33 WRITE or REWRITE Statement

	 COBOL ENVIRONMENTS
	4.1 VSAM Processing In COBOL/VS
	4.2 CICS/VS Processing In COBOL/VS
	4.3 CICS Programming Techniques and Restrictions
	4.4 Operating System Processing Procedures
	4.4.1 COBOL-FOR-MVS Procedures
	4.4.2 COBOL With CICS/VS Procedures

	4.5 Test-To-Production Procedures

	5 APPENDIX A: Structured Program Design
	6 APPENDIX B: Structured COBOL Skeleton

